	nest	Answer	Marks	Guidance	Question
1	(i)		$\begin{gathered} 1 \\ {[1]} \end{gathered}$		
1	(ii)	$\begin{aligned} & 3 \\ & 5 \end{aligned} \text { or } 0.6$	3 [3]	allow $\mathbf{B 3}$ for ± 0.6 oe; M1 for $\binom{25}{9}^{-\frac{1}{2}}=\binom{9}{25}^{\frac{1}{2}}$ soi or $\frac{1}{\binom{25}{9}^{\frac{1}{2}}}$ and M1 for at least one of 3 and 5 found	M1 for inversion even if they have done something else first, eg may be earned after $2^{\text {nd }} \mathrm{M} 1$ for inversion of their $\frac{5}{3}$

Question		Answer	Marks	Guidance	
2	(i)	$\begin{aligned} & 1 \\ & 9 \end{aligned}$	2 [2]	isw conversion to decimal M1 for 9 or for 3^{-2} or for $\frac{1}{3}$ Except M0 for 9 from $27 / 3$ or $\sqrt[3]{27}$	ie M1 for evidence of $(\sqrt[3]{27})^{2}$ or $1 /(\sqrt[3]{27})$ found correctly
2	(ii)	$2 a^{2} c^{-4}$ or $\begin{gathered}2 a^{2} \\ c^{4}\end{gathered}$ as final answer	3 [3]	B1 for each element; must be multiplied if B 0 , allow SC 1 for $64 a^{6} c^{3}$ obtained from numerator or for all elements correct but added	

Question		Answer	$\begin{array}{\|c\|} \hline \text { Marks } \\ \hline \text { B2 } \\ \text { [2] } \end{array}$	Guidance	
3	(i)	$3 n^{2}+6 n+5$ isw		M1 for a correct expansion of at least one of $(n+1)^{2}$ and $(n+2)^{2}$	
3	(ii)	odd numbers with valid explanation	B2	marks dep on 9(i) correct or starting again for B2 must see at least odd \times odd $=$ odd [for $3 n^{2}$] (or when n is odd, [3] n^{2} is odd) and odd $[+$ even $]+$ odd $=$ even soi, condone lack of odd \times even $=$ even for $6 n$; condone no consideration of n being even or B2 for deductive argument such as: $6 n$ is always even [and 5 is odd] so $3 n^{2}$ must be odd so n is odd B1 for odd numbers with a correct partial explanation or a partially correct explanation or B1 for an otherwise fully correct argument for odd numbers but with conclusion positive odd numbers or conclusion negative odd numbers B0 for just a few trials and conclusion	accept a full valid argument using odd and even from starting again Ignore numerical trials or examples in this part - only a generalised argument can gain credit

4	(i)	25	2 [2]	M1 for $\left(\frac{10}{2}\right)^{2}$ or $\left(\frac{1}{0.2}\right)^{2}$ oe soi or for $\frac{1}{0.04}$ oe	ie M1 for one of the two powers used correctly M0 for just $\frac{1}{0.4}$ with no other working
4	(ii)	$8 a^{9}$	3 [3]	B2 for 8 or M1 for $16^{\frac{1}{4}}=2$ soi and B1 for a^{9}	ignore \pm eg M1 for 2^{3}; M0 for just 2

Question		Answer	Marks	Guidance	
5	(i)	$\frac{9}{25}$ or 0.36 isw	2 [2]	M1 for numerator or denominator correct or for squaring correctly or for inverting correctly	M1 for eg $\frac{1}{\binom{25}{9}}$ or $\binom{25}{9}^{-1}$ or $\frac{25}{9}$ or for $\binom{3}{5}^{2}$ or $\frac{3}{5}$ M0 for just $\frac{1}{\binom{5}{3}^{2}}$
5	(ii)	27	2 [2]	M1 for $81^{4}=3$ soi	eg M1 for 3^{3} M0 for $81^{3}=531441$ (true but not helpful)

| $\mathbf{6}$ | (i) | 25 | 2 | M1 for $\frac{1}{\frac{1}{25}}$ or $\left(\frac{1}{25}\right)^{-1}$ or 5^{2} or $\frac{25}{1}$ | |
| :--- | :--- | :--- | :--- | :---: | :--- | :--- |
| $\mathbf{6}$ | (2i) | $\frac{4}{9}$ | 2 | M1 for 4 or 9 or $\frac{1}{9}$ or $\frac{2}{3}$ or $\left(\frac{2}{3}\right)^{2}$ or $\sqrt[3]{\frac{64}{729}}$ | 0 for just $\left(\frac{64}{729}\right)^{\frac{1}{3}}$ |
| [2] | | seen | | | |

Question		er		Marks	Guidance	
7	(i)	30		3 [3]	M1 for $(\sqrt{6})^{3}=6 \sqrt{6}$ soi and M1 for $\sqrt{24}=2 \sqrt{6}$ soi or allow SC2 for final answer of $5(\sqrt{6})^{2}$ or $5 \sqrt{36}$ or $10 \sqrt{9}$ etc	M0 for $6000 \sqrt{6}$ ie cubing 10 as well for those using indices: M1 for both $10 \times 6^{3 / 2}$ and $2 \times 6^{1 / 2}$ oe then M 1 for 5×6 oe award SC2 for similar correct answer with no denominator
7	(ii)	$\frac{8}{11}$		2 [2]	M1 for common denominator $(4+\sqrt{5})(4-\sqrt{5})$ soi - may be in separate fractions or for a final answer with denominator 11, even if worked with only one fraction	condone lack of brackets

| 9 | | $6 n^{2}+12 n+8$ or $2\left(3 n^{2}+6 n+4\right)$ oe
 as final answer |
| :--- | :--- | :--- | :--- |

3	B2 for 2 terms correct in final answer or for $(n+2)^{3}=n^{3}+6 n^{2}+12 n+8$	B1 for
or B1 for 1, 3, 3, 1 soi		
[3]	or SC2 for final answer of $3 n^{2}+6 n+4$	3 condoning one error

10	(i) /3 isw	2	condone $\pm 4 / 3$; M1 for numerator or denominator correct or for $\frac{3}{4}$ or $\frac{1}{\left(\frac{3}{4}\right)}$ oe or for $\left(\frac{16}{9}\right)^{\frac{1}{2}} \text { soi }$	M1 for just -4/3; allow M1 for $\sqrt{16}=4$ and $\sqrt{9}=3$ soi; condone missing brackets
10	(ii) $\frac{2 a}{c^{5}}$ or $2 a c^{-5}$	3	B1 for each 'term' correct; mark final answer; if B0, then SC1 for $\left(2 a c^{2}\right)^{3}=8 a^{3} c^{6}$ or $72 a^{5} c^{7}$ seen	condone a^{1}; condone multiplication signs but $\mathbf{0}$ for addition signs

11	(i)(A) $1 / 16$	$\mathbf{1}$	isw attempted conversion of $1 / 16$ to decimals	accept 0.0625 11
(i)(B) 1	$\mathbf{1}$		set image 'fit to height' so that in marking this question you also check that there is no working on the back page attached to the image	
11	(ii) $256 / 625$	$\mathbf{2}$	M1 for num or denom correct or for $4 / 5$ or 0.8	accept 0.4096

